Main/통계
분산 분석 (ANOVA) #1 분산분석이란?
research_notes
2022. 8. 17. 10:29
728x90
반응형
분산분석 (Analysis of Variance, ANOVA)
: 3개 이상 다수의 집단을 비교할 때 (평균 차이를 검정할 때) 사용하는 통계적 방법
(used to compare variances across the means (or average) of different groups
- 귀무가설 (Null Hypothesis, H0): 그룹의 평균 간에 차이가 없다.
- 대립가설 (H1): 그룹의 평균 사이에 차이가 있다.
- 인자/요인 (factor): 분산분석에서 독립변수는 종속변수에 영향을 미치는 인자라고 한다.
- ex) 소득 (income)
- 수준 (level): 분석에 사용되는 독립변수의 서로 다른 값을 나타낸다.
- 각 요인에는 둘 이상의 수준이 포함된다. Each factor will have two or more levels within it.
- ex) 저소득, 중간소득, 고소득 (low, middle, and high income ==> 3 levels)
- 각 요인의 자유도는 수준의 수보다 하나 작다. (Degree of freedom for each factor is one less than the number of levels)
분산분석 예제 (Example of ANOVA)
예제) 학교 A, B, C의 모든 아이들의 평균 IQ 점수가 동일한지/다른지 여부를 확인하려고 한다. 각 학교에는 1,000명의 아이들이 있지만, 모든 아이들을 모두 테스트하는 것은 너무 많은 시간과 돈이 들기 때문에, 각 학교의 n=30명의 아이에 대한 표본으로 평균의 차이를 검정한다.
Ex) A scientist wants to know if all children from schools A, B, and C have equal mean IQ scores. Each school has 1,000 children. It takes too much time and money to test all 3,000 children. So a simple random sample of n = 30 children from each school is tested.
- 학교당 1,000명의 아이들 모두 평균 IQ가 같은가? (All 1,000 children per school have the same mean IQ?)
- 귀무가설 (Null Hypothesis, H0): 학교간 아이들 평균 IQ에 차이가 없다.
- 대립가설 (H1): 학교간 아이들 평균 IQ에 차이가 있다.
- 요인 - 학교 / 수준 - 학교 A, B, C (3개) / 자유도 - 2
2022.08.19 - [Main/통계] - 분산분석 (ANOVA) #2 가정 및 이유
728x90
반응형